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COMMENT 

Numerical simulations of radial displacement of a wetting fluid 
by a non-wetting fluid in a porous medium 

D G Kiriakidis, G H Neale and E Mitsoulis 
Department of Chemical Engineering, University of Ottawa, Ottawa, Ontario, 
K I N  6N5. Canada 

Received 26 June 1990, in final form 14 August 1990 

Abstract. An approach to simulate the radial displacement of a wetting fluid by a non- 
wetting fluid in a porous medium is described. The computer algorithm is based on the 
DLA, anti-DLA and invasion percolation models as well as on the notion of the phase 
diagram. The transition from DLA and an t i -mA to invasion percolation is made according 
to a transition probability. The numerical results are in very good qualitative agreement 
with numerical and experimental results available in the literature. 

The three types of immiscible displacement of a wetting fluid by a non-wetting fluid 
in a porous medium, namely, viscous fingering, capillary fingering and stable displace- 
ment are described by the phase diagram [l,  21. Each type corresponds to a region 
within the phase diagram having as its axes the viscosity ratio, M ( = p n w / p w ) ,  and 
the capillary number, Ca( = Vp,,/ 7 ) .  The boundaries of each region are calculated in 
terms of the viscosity ratio, the capillary number and the geometrical properties of the 
porous medium. 

Three distinct statistical models have been developed in order to describe the above 
regions: ( a )  the DLA model (diffusion-limited aggregation) [3 ,4]  for viscous fingering 
at low viscosity ratios, ( b )  the anti-DLA model [4] for stable displacement, and ( c )  the 
invasion percolation model [ 5 ]  at very low capillary numbers. 

Both the DLA and anti-DLA models solve the Laplace equation by letting random 
walkers wander in the displaced and displacing phases, respectively, and stick upon 
contact with the interface. The absence of walkers from one phase implies negligible 
pressure gradients in that phase. According to the invasion percolation model, in the 
case of drainage the interface moves along the paths of least resistance which are 
present in the largest channels, since they provide the lowest capillary pressure. 

An algorithm has been developed by Leclerc and Neale [6] in order to describe 
radial, immiscible displacement of a wetting fluid in a porous medium represented by 
a network of interconnected capillaries. By using the DLA and the anti-DLA models, 
as well as the notion of open bonds for percolation, they described the transition from 
viscous fingering to capillary fingering at low viscosity ratios and the transition from 
stable displacement to capillary fingering at high viscosity ratios. A similar method 
has been employed by Kiriakidis et a1 [73 to simulate linear displacement of a wetting 
fluid by a non-wetting one. 

Although Leclerc and Neale’s algorithm describes successfully the intermediate 
regions it fails to describe the capillary fingering region at very low capillary numbers. 
According to their approach one expects an almost complete recovery of the wetting 
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Figure 1. Numerical experiments for M = 7.6 x lo-' and different capillary numbers: 
( a )  Ca =2.30x lo-", ( b )  Ca =2.30x lo-'', (c)  Ca = 1 . 1 5 ~  
( e )  Ca = 1.15 x lo-', (f) Ca = 1.15 x 

( d )  Ca = 1 . 1 5 ~  

fluid at very low capillary numbers, since random walkers approach the interface with 
high sticking probabilities and high numbers of open bonds for percolation. Both 
experimental and numerical studies [8,9] confirm the existence of a plateau in the 
capillary region when the recovery is plotted against the capillary number. The use of 
non-wetting walkers in the capillary fingering region and at low viscosity ratios is not 
justified since viscous forces in the displacing non-wetting fluid are negligible compared 
to capillary forces and to viscous forces in the wetting fluid. 
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Figure 1. (continued) 

To resolve the above problems the present authors made use of a different approach. 
In this approach use is made not only of the DLA and anti-DLA models but also of the 
invasion percolation model in order to describe displacements in the capillary fingering 
region. In this region pressure gradients in both phases are negligible compared to the 
capillary pressure and the interface advances according to the invasion percolation 
mechanism. The absence of random walkers accounts for negligible pressure gradients 
in both phases. The notion of the sticking probability is used exactly as in [6] and 
the boundaries of the phase diagram are calculated from the same equations, i.e. 
equations (9), (10) and (11) of [6]. No use is made of the notion of open bonds for 
percolation. According to the present approach, displacements at low viscostiy ratios 
and for Ca > C U D L A  are described by the DLA model. In this region only viscous forces 
in the displaced wetting phase are significant. Within the intermediate region ( C U D L A  > 
Ca > Ca,,,) viscous forces in the displaced phase are comparable to the capillary 
forces. The interface moves according to both the DLA and the invasion percolation 
mechanisms, with a ‘transition probability’ given by 

where C U D L A ,  CalNv are the capillary numbers at the DLA and invasion percolation 
limits and ‘0’ denotes the order of these quantities as approximated by the logarithm. 
The transition probability is different from the normalized pressure drop used in [6]. 
It is expressed in terms of the capillary number of the displacement and the limits of 
the phase diagram without including the viscosity ratio as in [6]. 

Therefore, in the intermediate region where Ca is close to C U D L A  the interface 
advances predominantly according to the DLA mechanism. As Ca approaches Ca,,, 
the interface advances according to the invasion percolation mechanism. Finally, for 
Ca < Ca,,, the interface moves solely according to the invasion percolation mechan- 
ism. Within this latter region viscous forces are negligible compared to capillary forces 
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Figure 2. Numerical experiments for M = 13 and different capillary numbers: ( a )  Ca = 
3.0xIO-’,(b) C a = 3 , 0 ~ 1 0 - ~ , ( c )  C a = 6 . 0 ~ 1 0 - ~ , ( d )  C a = 1 . 5 ~ 1 O - ~ , ( e )  C a = 1 . 5 ~ 1 0 - ~ ,  
(f) Ca = 1.5 x lo-’. 

and the interface moves through the largest channels since these channels provide the 
lowest capillary pressure, P,, expressed by 

4y  COS e 
Pc=- 

d 

where y is the interfacial tension, e the contact angle and d the channel diameter. 
The transition from the stable displacement region to the capillary fingering region 

is described in a similar way. Thus, instead of the DLA model, the anti-DLA model is 
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Figure 2. (continued) 

used and the frequency ratio of having the anti-DLA mechanism or the invasion 
percolation mechanism depends on a probability given by an equation similar to (1). 

The results of the different transitions are presented in figures 1 and 2. These 
simulations were performed for the same conditions as those employed by Leclerc and 
Neale [ 6 ]  and for the same sets of experimental data as those presented by Lenormand 
and Zarcone [ 101. The fractal dimensions were calculated by using a box-counting 
algorithm, and are presented in table 1 for reference. 

To summarize, an approach has been developed to describe the transition from 
viscous fingering to capillary fingering at low viscosity ratios, and the transition from 
stable displacement to capillary fingering at high viscostity ratios. The results of the 
simulations are in qualitative agreement with both experimental and numerical results 
available in the literature. 

Table 1. Results of the simulations. 

Figure M Ca D % recovery 

la 7.6 x 2.30~ lo-” 1.80-1.84 50-55 
lb 7 . 6 ~  lo-’ 2.30X lo-’” 1.80-1.84 50-55 
IC 7 . 6 ~  lo-’ 1.15 X 1.77-1.81 43-47 
Id 7 . 6 ~  1.15 X lo-’ 1.75-1.78 33-39 
le 7.6x lo-’ 1.15 X lo-’ 1.64-1.68 15-18 
If 7.6x lo-’ 1.15X 1.53-1.56 12-14 

2a 13 3.0x lo-’ 1.80-1.84 50-55 
2b 13 3 . 0 ~  1.80-1.84 50-55 
2c 13 6.0x 1.80-1.84 50-55 
2d 13 1.5 X lo-’ 1.83-1.85 60-64 
2e 13 1.5 x 1.89-1.92 78-82 
2f 13 1.5 x 1.95-1.97 87-91 
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